Attribute selection with fuzzy decision reducts

نویسندگان

  • Chris Cornelis
  • Richard Jensen
  • Germán Hurtado Martín
  • Dominik Slezak
چکیده

Rough set theory provides a methodology for data analysis based on the approximation of concepts in information systems. It revolves around the notion of discernibility: the ability to distinguish between objects, based on their attribute values. It allows to infer data dependencies that are useful in the fields of feature selection and decision model construction. In many cases, however, it is more natural, and more effective, to consider a gradual notion of discernibility. Therefore, within the context of fuzzy rough set theory, we present a generalization of the classical rough set framework for databased attribute selection and reduction using fuzzy tolerance relations. The paper unifies existing work in this direction, and introduces the concept of fuzzy decision reducts, dependent on an increasing attribute subset measure. Experimental results demonstrate the potential of fuzzy decision reducts to discover shorter attribute subsets, leading to decision models with a better coverage and with comparable, or even higher accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection with Fuzzy Decision Reducts

In this paper, within the context of fuzzy rough set theory, we generalize the classical rough set framework for data-based attribute selection and reduction, based on the notion of fuzzy decision reducts. Experimental analysis confirms the potential of the approach.

متن کامل

Designing a model of intuitionistic fuzzy VIKOR in multi-attribute group decision-making problems

Multiple attributes group decision making (MAGDM) is regarded as the process of determining the best feasible solution by a group of experts or decision makers according to the attributes that represent different effects. In assessing the performance of each alternative with respect to each attribute and the relative importance of the selected attributes, quantitative/qualitative evaluations ar...

متن کامل

Multiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach

For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...

متن کامل

2-tuple intuitionistic fuzzy linguistic aggregation operators in multiple attribute decision making

In this paper, we investigate the multiple attribute decisionmaking (MADM) problems with 2-tuple intuitionistic fuzzylinguistic information. Then, we utilize arithmetic and geometricoperations to develop some 2-tuple intuitionistic fuzzy linguisticaggregation operators. The prominent characteristic of theseproposed operators are studied. Then, we have utilized theseoperators to develop some app...

متن کامل

Triangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making

As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2010